Transcoding: Change stream parameters¶
Goal¶
In the previous Transcoding: Connect player to recorder tutorial, we’ve seen how to connect a player to a recorder to perform basic transcoding. In this tutorial you will learn how to:
Change recorded streams parameters in order to transform streams changing video resolution or audio channels
Prerequisites¶
Walkthrough¶
The source code is basically the same as in the previous tutorial, so we will only focus on differences. First, we define a struct to configure and pass transcoded audio and video parameters to the right callback:
typedef struct
{
gint video_width;
gint video_height;
gint video_framerate;
gint video_bitrate;
gint audio_channels;
gint audio_sampling;
gint audio_bitrate;
} OutputConfig;
We are setting those parameters in the application main entry point with any values we want to test:
app.output.video_width = 1024;
app.output.video_height = 720;
app.output.video_framerate = 30;
app.output.video_bitrate = 1200000;
app.output.audio_bitrate = 56000;
Then the only thing left to do is configuring the recorder streams when they
are requested. This is done in the same _recorder_request_stream
function as
in the previous tutorial:
FluStream *_recorder_request_stream(const App *app, FluStreamType stream_type)
{
FluStreamInfo info = {0};
info.type = stream_type;
if (stream_type == FLU_STREAM_TYPE_VIDEO)
{
info.data.video.vcodec.type = FLU_STREAM_VIDEO_CODEC_H264;
info.data.video.width = app->output.video_width;
info.data.video.height = app->output.video_height;
info.data.video.fps_n = app->output.video_framerate;
info.data.video.fps_d = 1;
info.data.video.bitrate = app->output.video_bitrate;
}
else if (stream_type == FLU_STREAM_TYPE_AUDIO)
{
info.data.audio.acodec = FLU_STREAM_AUDIO_CODEC_AAC;
info.data.audio.channels = app->output.audio_channels;
info.data.audio.rate = app->output.audio_sampling;
info.data.audio.bitrate = app->output.audio_bitrate;
}
else
{
return NULL;
}
GError *error = NULL;
FluStream *stream = flu_recorder_request_stream(app->recorder, &info, &error);
if (!stream)
{
g_print("Error: cannot create %s stream for recorder (%s)\n",
(stream_type == FLU_STREAM_TYPE_VIDEO) ? "video" : "audio",
error ? error->message : "undefined error");
if (error)
{
g_error_free(error);
}
}
return stream;
}
We are using the FluStreamVideoInfo struct to configure transcoded video streams:
info.data.video.vcodec.type = FLU_STREAM_VIDEO_CODEC_H264;
info.data.video.width = app->output.video_width;
info.data.video.height = app->output.video_height;
info.data.video.fps_n = app->output.video_framerate;
info.data.video.fps_d = 1;
info.data.video.bitrate = app->output.video_bitrate;
And FluStreamAudioInfo struct to configure transcoded audio streams:
info.data.audio.acodec = FLU_STREAM_AUDIO_CODEC_AAC;
info.data.audio.channels = app->output.audio_channels;
info.data.audio.rate = app->output.audio_sampling;
info.data.audio.bitrate = app->output.audio_bitrate;
Full source code¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 | #include <fluendo-sdk.h>
#include <stdio.h>
/*****************************************************************************
* Application structures
*****************************************************************************/
typedef struct
{
gint video_width;
gint video_height;
gint video_framerate;
gint video_bitrate;
gint audio_channels;
gint audio_sampling;
gint audio_bitrate;
} OutputConfig;
typedef struct
{
FluStream *player_stream;
FluStream *recorder_stream;
} Stream;
typedef struct
{
gchar *input_uri;
GMainLoop *main_loop;
guint keyboard_source_id;
FluPlayer *player;
FluRecorder *recorder;
OutputConfig output;
/* Unlike previous fields which are initialized BEFORE threads creation
* (see _init_app) and cleaned up AFTER joining all threads (see _clean_app),
* nb_streams and streams pointer are initialized from the Fluendo-SDK events
* thread (see _player_on_state_changed) and then read from potentially
* different streaming threads (see _player_on_render). They are cleaned up
* AFTER joining all threads like the rest of fields.
* As nb_streams and streams pointer are only written once and then constant
* until joining all threads, we only need a memory barrier (no need for locks).
* We obtain it by using atomic for the streams pointer taking care of writing
* nb_streams BEFORE setting the atomic pointer. */
guint nb_streams;
volatile Stream *streams;
} App;
/*****************************************************************************
* Recorder events management
*****************************************************************************/
static gboolean _recorder_on_request_save_mode(FluRecorder *recorder, FluRecorderEvent *event, gpointer data)
{
FluRecorderEventRequestSaveMode *ev = (FluRecorderEventRequestSaveMode *)event;
ev->mode = FLU_RECORDER_SAVE_MODE_FILE;
ev->data.file.filename = "./output_transcoded.mp4";
return TRUE;
}
static gboolean _recorder_on_state_changed(FluRecorder *recorder, FluRecorderEvent *event, gpointer data)
{
FluRecorderEventState *ev = (FluRecorderEventState *)event;
g_print("Recorder state changed to %s\n", flu_recorder_state_name_get(ev->state));
return TRUE;
}
static gboolean _recorder_on_error(FluRecorder *recorder, FluRecorderEvent *event, gpointer data)
{
FluRecorderEventError *ev = (FluRecorderEventError *)event;
g_print("Error (recorder): %s %s\n", ev->error.error->message, ev->error.dbg);
g_main_loop_quit((GMainLoop *)data);
return FALSE;
}
/*****************************************************************************
* Recorder creation/destruction
*****************************************************************************/
FluRecorder *_recorder_create(GMainLoop *main_loop)
{
FluMediaInfo media_info = {0};
media_info.format = FLU_MEDIA_INFO_FORMAT_MP4;
GError *error = NULL;
FluRecorder *recorder = flu_recorder_new(&media_info, &error);
if (recorder)
{
flu_recorder_event_listener_add(recorder, FLU_RECORDER_EVENT_REQUEST_SAVE_MODE, _recorder_on_request_save_mode, NULL);
flu_recorder_event_listener_add(recorder, FLU_RECORDER_EVENT_STATE, _recorder_on_state_changed, NULL);
flu_recorder_event_listener_add(recorder, FLU_RECORDER_EVENT_ERROR, _recorder_on_error, main_loop);
}
else
{
g_print("Error: cannot create recorder (%s)\n",
error ? error->message : "undefined error");
if (error)
{
g_error_free(error);
}
}
return recorder;
}
void _recorder_destroy(FluRecorder *recorder)
{
if (recorder)
{
flu_recorder_stop(recorder);
flu_recorder_unref(recorder);
}
}
/*****************************************************************************
* Recorder functions
*****************************************************************************/
FluStream *_recorder_request_stream(const App *app, FluStreamType stream_type)
{
FluStreamInfo info = {0};
info.type = stream_type;
if (stream_type == FLU_STREAM_TYPE_VIDEO)
{
info.data.video.vcodec.type = FLU_STREAM_VIDEO_CODEC_H264;
info.data.video.width = app->output.video_width;
info.data.video.height = app->output.video_height;
info.data.video.fps_n = app->output.video_framerate;
info.data.video.fps_d = 1;
info.data.video.bitrate = app->output.video_bitrate;
}
else if (stream_type == FLU_STREAM_TYPE_AUDIO)
{
info.data.audio.acodec = FLU_STREAM_AUDIO_CODEC_AAC;
info.data.audio.channels = app->output.audio_channels;
info.data.audio.rate = app->output.audio_sampling;
info.data.audio.bitrate = app->output.audio_bitrate;
}
else
{
return NULL;
}
GError *error = NULL;
FluStream *stream = flu_recorder_request_stream(app->recorder, &info, &error);
if (!stream)
{
g_print("Error: cannot create %s stream for recorder (%s)\n",
(stream_type == FLU_STREAM_TYPE_VIDEO) ? "video" : "audio",
error ? error->message : "undefined error");
if (error)
{
g_error_free(error);
}
}
return stream;
}
gboolean _recorder_start(const App *app)
{
GError *error = NULL;
flu_recorder_record(app->recorder, &error);
if (error)
{
g_print("Error: cannot start recorder (%s)\n", error->message);
g_error_free(error);
return FALSE;
}
return TRUE;
}
/*****************************************************************************
* Player events management
*****************************************************************************/
static gboolean _player_on_state_changed(FluPlayer *player, FluPlayerEvent *event, gpointer data)
{
gboolean ret = TRUE;
FluPlayerEventState *ev = (FluPlayerEventState *)event;
g_print("Player state changed to %s\n", flu_player_state_name_get(ev->state));
if (ev->state == FLU_PLAYER_STATE_PLAYING)
{
App *app = (App *)data;
/* First time player goes to PLAYING state, we initialize a new recorder output stream
* for each player stream, and we keep the relationships between corresponding streams.
* This callback is called from the Fluendo-SDK event thread. As app->streams pointer
* is only written once here and then read from streaming threads later, we use an atomic
* in order to ensure a memory fence. */
Stream *streams = g_atomic_pointer_get(&app->streams);
if (!streams)
{
/* For the purpose of the tutorial, we just take into account video and audio streams,
* but the same may be achieved with text and data streams too. */
GList *player_streams = flu_player_video_active_streams_get(player);
player_streams = g_list_concat(player_streams, flu_player_audio_active_streams_get(player));
app->nb_streams = g_list_length(player_streams);
streams = g_new0(Stream, app->nb_streams);
Stream *stream_link = streams;
for (GList *l = player_streams; l; l = l->next)
{
/* We don't need to keep any extra references to player or recorder streams. Weak
* references are enough as all links are only used within callbacks during lifetimes
* of the player and recorder (which already keep hard references to those streams). */
stream_link->player_stream = (FluStream *)l->data;
FluStreamType stream_type = flu_stream_type_get(stream_link->player_stream);
stream_link->recorder_stream = _recorder_request_stream(app, stream_type);
if (stream_link->recorder_stream)
{
flu_stream_unref(stream_link->recorder_stream);
}
++stream_link;
}
flu_stream_list_free(player_streams);
g_atomic_pointer_set(&app->streams, streams);
/* We are now ready for transcoding: let's start the recorder. */
if (!_recorder_start(app))
{
ret = FALSE;
g_main_loop_quit(app->main_loop);
}
}
}
return ret;
}
static gboolean _player_on_error(FluPlayer *player, FluPlayerEvent *event, gpointer data)
{
FluPlayerEventError *ev = (FluPlayerEventError *)event;
g_print("Error (player): %s %s\n", ev->error->message, ev->dbg);
g_main_loop_quit((GMainLoop *)data);
return FALSE;
}
static gboolean _player_on_eos(FluPlayer *player, FluPlayerEvent *event, gpointer data)
{
g_print("End of source media reached => transcoding stopped automatically.\n");
g_main_loop_quit((GMainLoop *)data);
return TRUE;
}
static gboolean _player_on_request_render_mode(FluPlayer *player, FluPlayerEvent *event, gpointer data)
{
FluPlayerEventRequestRenderMode *ev = (FluPlayerEventRequestRenderMode *)event;
/* As we are just transcoding, we request:
* - no visual rendering,
* - no synchronization (buffers are treated as fast as they arrive),
* - notification (to know when buffers are ready to be copied). */
ev->render = FALSE;
ev->synchronize = FALSE;
ev->notify = TRUE;
return TRUE;
}
static gboolean _player_on_render(FluPlayer *player, FluPlayerEvent *event, gpointer data)
{
FluPlayerEventRender *ev = (FluPlayerEventRender *)event;
FluStreamType stream_type = flu_stream_type_get(ev->stream);
/* For the purpose of the tutorial, we just take into account video and audio streams,
* but the same may be achieved with text and data streams too. */
if ((stream_type == FLU_STREAM_TYPE_VIDEO) || (stream_type == FLU_STREAM_TYPE_AUDIO))
{
const App *app = (const App *)data;
/* This callback is called from different streaming threads (for audio and
* video streams). As app->streams pointer is initialized from another thread
* (the event thread in _player_on_state_changed), we use an atomic to ensure
* a memory fence. */
Stream *streams = g_atomic_pointer_get(&app->streams);
if (streams)
{
for (guint i = 0; i < app->nb_streams; ++i)
{
Stream *stream = streams + i;
if (stream->player_stream == ev->stream)
{
/* Write last read buffer from selected player stream to corresponding recorder stream. */
if (stream->recorder_stream)
{
/* Copy decoded buffer from player stream to corresponding recorder
* stream for further encoding. */
if (!flu_stream_last_sample_copy(ev->stream, stream->recorder_stream))
{
g_print("Warning: cannot copy %s buffer from player to recorder\n",
(stream_type == FLU_STREAM_TYPE_VIDEO) ? "video" : "audio");
}
}
break;
}
}
}
}
return TRUE;
}
/*****************************************************************************
* Player creation/destruction
*****************************************************************************/
FluPlayer *_player_create(App *app)
{
FluPlayer *player = flu_player_new();
flu_player_event_listener_add(player, FLU_PLAYER_EVENT_STATE, _player_on_state_changed, app);
flu_player_event_listener_add(player, FLU_PLAYER_EVENT_ERROR, _player_on_error, app->main_loop);
flu_player_event_listener_add(player, FLU_PLAYER_EVENT_EOS, _player_on_eos, app->main_loop);
flu_player_event_listener_add(player, FLU_PLAYER_EVENT_REQUEST_RENDER_MODE, _player_on_request_render_mode, NULL);
flu_player_event_listener_add(player, FLU_PLAYER_EVENT_RENDER, _player_on_render, app);
return player;
}
void _player_destroy(FluPlayer *player)
{
if (player)
{
flu_player_close(player);
flu_player_unref(player);
}
}
/*****************************************************************************
* Application management functions
*****************************************************************************/
static gboolean _handle_keyboard(GIOChannel *source, GIOCondition cond, gpointer data)
{
static gboolean exiting = FALSE;
gchar *str = NULL;
if (g_io_channel_read_line(source, &str, NULL, NULL, NULL) == G_IO_STATUS_NORMAL)
{
if ((str[0] == 'q') && !exiting)
{
exiting = TRUE;
g_print("Exiting...\n");
g_main_loop_quit((GMainLoop *)data);
}
g_free(str);
}
return TRUE;
}
static void _clean_app(App *app)
{
if (app->keyboard_source_id)
{
g_source_remove(app->keyboard_source_id);
app->keyboard_source_id = 0;
}
_player_destroy(app->player);
app->player = NULL;
_recorder_destroy(app->recorder);
app->recorder = NULL;
/* We don't need memory fence anymore here as all threads have been
* joined at destroying the player and the recorder. */
g_free((Stream *)app->streams);
app->streams = NULL;
app->nb_streams = 0;
g_main_loop_unref(app->main_loop);
app->main_loop = NULL;
flu_shutdown();
g_free(app->input_uri);
app->input_uri = NULL;
}
static gboolean _init_app(App *app, int argc, const char **argv)
{
if (argc >= 2)
{
gchar *absolute_path = g_canonicalize_filename(argv[1], NULL);
app->input_uri = g_filename_to_uri(absolute_path, NULL, NULL);
g_free(absolute_path);
}
if (!app->input_uri)
{
g_print("Usage: %s [INPUT_FILE_PATH]\n", argv[0]);
return FALSE;
}
flu_initialize();
app->main_loop = g_main_loop_new(NULL, FALSE);
app->recorder = _recorder_create(app->main_loop);
if (!app->recorder)
{
_clean_app(app);
return FALSE;
}
app->player = _player_create(app);
if (!app->player)
{
_clean_app(app);
return FALSE;
}
return TRUE;
}
/*****************************************************************************
* Application main entry point
*****************************************************************************/
int main(int argc, const char **argv)
{
App app = {0};
/* Initialize application. */
if (!_init_app(&app, argc, argv))
{
return -1;
}
/* Configure transcoded output. */
app.output.video_width = 1024;
app.output.video_height = 720;
app.output.video_framerate = 30;
app.output.video_bitrate = 1200000;
app.output.audio_bitrate = 56000;
/* Start player. */
flu_player_uri_open(app.player, app.input_uri);
flu_player_play(app.player);
/* Run main loop. */
GIOChannel *io_stdin = g_io_channel_unix_new(fileno(stdin));
app.keyboard_source_id = g_io_add_watch(io_stdin, G_IO_IN, (GIOFunc)_handle_keyboard, app.main_loop);
g_io_channel_unref(io_stdin);
g_print("Transcoding started. Press q<Enter> to stop.\n");
g_main_loop_run(app.main_loop);
/* Clean application. */
_clean_app(&app);
return 0;
}
|
You can also download it here.
Building¶
This source code along with the rest of tutorials can be compiled using the following commands.
On Linux:
mkdir fluendo-sdk-tutorials && cd fluendo-sdk-tutorials
meson /opt/fluendo-sdk/share/doc/fluendo-sdk/tutorials/src
ninja
On Windows:
mkdir fluendo-sdk-tutorials
cd fluendo-sdk-tutorials
meson C:\fluendo-sdk\<version>\<x86/x86_64>\share\doc\fluendo-sdk\tutorials\src
ninja
To generate a Visual Studio project, you can pass the --backend=vs
option
to meson.
Conclusions¶
To summarize, you have learned during this tutorial:
How modifying the FluStreamVideoInfo and the FluStreamAudioInfo structs you can change the video and audio parameters, respectively